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SYMBOLS 

a0,a, ,a2'a3 numer i ca l   cons t an t s   fo r   pa rabo l i c   ve loc i ty   p ro f i l e  

bo ,b , ,b2 ,b3   numer ica l   cons tan ts   for   parabol ic   ve loc i ty   p rof i le  
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phase  veloci ty  of vortex 

amplitude of vortex 

c i r c u l a t i o n   c o n s t a n t  

o rde r  of  magnitude 

inner   region  independent   var iable  

Reynolds number of undisturbed  flow 

time 

v e l o c i t y   i n  streamwise d i r e c t i o n  

f ree-s t ream  ve loc i ty  

v e l o c i t y   i n   t r a n s v e r s e   d i r e c t i o n  

streamwise coord ina te   d i r ec t ion  

streamwise coordinate  in  convective  frame 

streamwise coord ina te   in   inner   reg ion  

t ransverse   coord ina te  

t ransverse  coordinate   in   convect ive  f rame 

t ransverse   coord ina te   in   inner   reg ion  

c i r c u l a t i o n  of vortex 

boundary  layer  thickness 

small matching parameter 

small parameter governing  s ize  of inner   inv isc id   reg ion  

k inemat ic   v i scos i ty  

a rb i t ra ry   phase   angle  

stream funct ion 

v o r t i c i t y  
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subscripts: 

C center of vortex 

i inner region 

nP nonparallel  flow 

0 outer  region 

P parallel flow 

S + when analysis is  for 

0 , l  ,2  order of approximation 

y > yc; - when analysis is for y < yc 
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SUMMARY 

The f low  f i e ld   o f  a v o r t e x   i n  a viscous  shear   f low i s  found by cons t ruc t ing  a 
uniformly  val id  asymptotic expans ion   cons i s t ing   o f   an   i nne r   so lu t ion   f i e ld   r ep re -  
sen ted ,  t o  lowest   order ,  by a two-dimensional ,   nonl inear ,   inviscid  Stuar t   vor tex  and 
a n   o u t e r   s o l u t i o n   f i e l d   r e p r e s e n t e d ,   t o   l o w e s t   o r d e r ,  by e i t h e r  a two-dimensional 
parallel or self-s imilar   viscous  f low.  The technique   involves   sca l ing   bo th   the  
t ransverse  and streamwise c o o r d i n a t e s   i n   t h e   v i c i n i t y  of t he   vo r t ex  as w e l l  as allow- 
i n g   f o r  a " s l o w "  v a r i a t i o n  of t he   ou te r   v i scous   f l ow.   Cr i t e r i a  are e s t a b l i s h e d   f o r  
b o t h   t h e   s i z e  of t h e   v o r t i c a l   s t r u c t u r e   a n d   p r o x i m i t y  t o  t h e  boundary  surfaces. The 
composi te   solut ion is  a cons is ten t   mathemat ica l   p ic ture   o f   the   f low  f ie ld  a t  a f i x e d  
s t r e a m w i s e   l o c a t i o n   a s   t h e   v o r t i c a l   s t r u c t u r e   e v o l v e s   p a s t   t h i s   p o i n t .  Such a formu- 
l a t i o n  is  a l s o   u s e f u l   i n   t h e   s p e c i f i c a t i o n  of  boundary o r   i n i t i a l   c o n d i t i o n s   i n  
numer i ca l   f l u id  dynamic c a l c u l a t i o n s ,  where a n   i n c o n s i s t e n t   s e t t i n g  of these  condi- 
t i o n s   l e a d s   t o   s p u r i o u s   r e s u l t s   f o r   r a t h e r   l o n g   c o m p u t a t i o n  times. 

V 



1 .  INTRODUCTION 

Of g e n e r a l   i n t e r e s t   i n  a b road   c l a s s  of w a l l  bounded  flows is  the  dynamic evolu- 
t i o n  of vo r t i ca l   s t ruc tu res   t h rough   t he   f l ow.   In   gene ra l ,   t hese   s t ruc tu res   a r e  
three-dimensional  and  their  downstream evolu t ion  i s  exceedingly complex. I n  f a c t ,  as 
y e t  no overal l   mathematical   descr ipt ion  of   such  ent i t ies   has   heen  formulated.  It is  
one  of t h e   i n t e n t i o n s   h e r e ,  however, t o   e s t a b l i s h  a framework,  based  on f i r s t   p r i n c i -  
p l e s ,  which may form a b a s i s   f o r  more de t a i l ed   ana ly t i ca l   s tud ie s .   Ano the r  motiva- 
t ion   concerns   the   es tab l i shment   o f   boundary   and   in i t ia l   condi t ions   in   numer ica l  
experiments.  In  such  problems it i s  of g rea t   impor t ance   t ha t  any d i s t r i b u t i o n  of 
va lues ,   fo r   t he   dependen t   va r i ab le s ,   be   cons i s t en t  so t h a t  no  extraneous  or  nonphysi- 
ca l  r e s u l t s   c o n t a m i n a t e   t h e   s o l u t i o n   f i e l d .  This is  e s p e c i a l l y   t r u e  when such a 
v a r i a b l e  as p res su re  is  required  from  the  numerical   solution. 

The mathematical  framework t h a t  i s  used  here  i s  t h e  method  of  matched asymptotic 
expansions. An i n n e r   s o l u t i o n   f i e l d  i s  constructed  which  consis ts   of  a two- 
d imens iona l   vor t ica l   s t ruc ture .  The o u t e r   s o l u t i o n   f i e l d  i s  t aken   t o   be   an   o the rwise  
undisturbed l a m i n a r  two-dimensional p a r a l l e l   o r   s e l f - s i m i l a r   v i s c o u s   f l o w   f i e l d .   I n  
o r d e r   t o   a l l o w   f o r  a f in i t e - ampl i tude   d i s tu rhance   f i e ld ,   bo th   t he   t r ansve r se   and  
s t r eamwise   coord ina te   d i r ec t ions   i n   t he   i nne r   r eg ion  are sca l ed  by a s u i t a b l y   d e f i n e d  
small  parameter.  Since  such a shor t   wave leng th   so lu t ion   f i e ld  must ,  i n   gene ra l ,   be  
coupled t o   t h e  more s lowly  varying  outer   f low,  a two-variable  expansion  procedure i n  
the   s t reamwise   d i rec t ion  i s  necess i t a t ed .  The coord ina te   bas i s   a l l ows   fo r   t he  com- 
p l e t e   d e s c r i p t i o n  of t h e   i n n e r   f l o w   f i e l d .  I n  t h e   o u t e r   f i e l d ,   t h e   s c a l e d   t r a n s v e r s e  
coordinate  i s  replaced by a t r ansve r se   coo rd ina te   cha rac t e r i z ing   t he   ove ra l l   s i ze  of 
t he  boundary l aye r   f l ow,   and   t he   s t r eamwise   coord ina te s   a r e   l e f t   una l t e red .  

I t  has   been   a rgued   tha t   the   dominant   dynamics   in   the   v ic in i ty   o f   the   vor tex   a re  
inv i sc id   ( e .g . ,   r e f .  1 )  and t h a t   v i s c o u s   e f f e c t s ,  which are   omnipresent ,   p lay a sec-  
o n d a r y   r o l e   i n   t h e   o v e r a l l   f e a t u r e s  of the  vortex.  With t h i s   a s  a bas i s ,   an   exac t  
s o l u t i o n   t o   t h e   a p p r o p r i a t e l y   s c a l e d   n o n l i n e a r ,   i n v i s c i d   v o r t i c i t y   t r a n s p o r t  equa- 
t i on ,   t he   S tua r t   vo r t ex   so lu t ion ,  i s  t a k e n   a s   t h e   i n n e r   s o l u t i o n   f i e l d   t o   l o w e s t  
order .  It is  found t h a t ,   t o   l o w e s t   o r d e r ,   t h i s   s o l u t i o n  i s  e a s i l y  matched t o  a c l a s s  
of p a r a l l e l  and  nonparallel   viscous  dominated  f lows. The compos i t e   so lu t ion   f i e ld  i s  
constructed from the   lowes t   o rder   inner   and   ou ter   so lu t ions ,   and   h igher   o rder   equa-  
t i o n s   a r e   u s e d   t o   i d e n t i f y   t h e   i n n e r   v a r i a b l e   s c a l i n g   p a r a m e t e r .   F i n a l l y ,   r e s t r i c -  
t i o n s  on the   p roximi ty   o f   the   vor tex   to   boundary   sur faces   a re   der ived  from t h e  
requirement of ze ro  component v e l o c i t i e s  on the  boundaries .  

2. I N N E R  SOLUTION FIELD FOR EMBEDDED VORTEX 

Consider a two-d imens iona l   vo r t i ca l   s t ruc tu re   evo lv ing   i n   an   o the rwise   und i s -  
turbed  two-dimensional  viscous  flow. The underlying  dynamics  of  the  vortex i s  i n v i s -  
c i d  and i t s  evolu t ion  i s  nonl inear .  With these  basic  requirements,   one  can  deduce 
from f i r s t   p r i n c i p l e s  a v o r t i c a l   s t r u c t u r e  which i s  embedded i n  an  otherwise  viscous 
dominated  flow. As i n d i c a t e d   i n   s e c t i o n  1 , t h e  method  of  matched asymptotic expan- 
s ions  i s  used t o   c o n s t r u c t  a u n i f o r m l y   v a l i d   d i s t r i b u t i o n  of   f low  var iab les   in  a 
class of p a r a l l e l  and  nonparal le l   wal l  bounded laminar  flows. 

An appropriate   f rame  of   reference must f i r s t   b e   e s t a b l i s h e d   i n   t h e   f l o w .  A t  
some time to, the   vo r t ex   w i th   cen te r  a t  (xc,y,) i s  assumed t o  be moving uniformly 



with  constant  phase  velocity c. The value c used is taken as the  Eulerian  veloc- 
i t y  a t  the   po in t  ( xc,yc) in   the   undis turbed   f low  f ie ld .  The vortex  f low is  then 
s t a t iona ry   i n   t he   coo rd ina te   sys t em 

x '  = x - c t  

Y' = Y - Yc 

where  x'  and y' are the streamwise and  normal  coordinate  directions,   respec- 
t i v e l y ,  and x' = 0 .  when  x = x and t = t Such a descr ip t ion   a l lows   for   the  
cons t ruc ted   vor tex   to  be placed  In  a s teady  vlscous  outer   f low  f ie ld  which is e i t h e r  
independent  of x i t s e l f   o r  where  the  flow  has  reached some se l f - s imi l a r  s ta te .  I n  
addi t ion ,   the   coord ina te   l engths   x '  and  y' , appearing  in   equat ions ( 1  1 and (21, 
have  been  scaled by some c h a r a c t e r i s t i c   l e n g t h  of the  flow  such as channel  height  or 
l o c a l  boundary layer   thickness .   This ,  of course,  is necess i t a t ed  by the need f o r  
0 ( 1  ) sca l ing   i n   bo th   t he   i nne r  and o u t e r   s o l u t i o n   f i e l d s .  The physical  problem  of 
i n t e r e s t   r e q u i r e s   v o r t i c a l   s t r u c t u r e s  of small s p a t i a l   e x t e n t   r e l a t i v e   t o   t h e   c h a r a c -  
t e r i s t ic  scales of the   overa l l   f low.  Such a requi rement   d ic ta tes  a r e sca l ing  of the  
independent  variables  in  the  region  dominated by t h e   v o r t i c a l   s t r u c t u r e .   T h i s   y i e l d s  
a s t r e t c h i n g  of the  y '   coordinate  and the  decoupling of the streamwise dependence 
i n t o  a s low  var iable ,   represent ing  the  s low  divergence of the  overal l   f low,  and a 
f a s t   va r i ab le ,   r ep resen t ing   t he   l oca l ly   r ap id  streamwise v a r i a t i o n  of the  dis turbed 
v o r t i c a l  flow. The govern ing   d i f fe ren t ia l   equa t ions   for   the  embedded vortex  motion 
are then   wr i t t en   i n  terms of the   inner   var iab les :  

c 9' 

where 1-1 is a small s c a l i n g  parameter which is a funct ion of %e inverze  Reynolds 
number and is chosen   such   tha t   in   the   v ic in i ty  of the  vortex,  x and y are O ( 1 ) .  
I n   g e n e r a l ,  x can be expressed as a series expansion of x ' ,  which would account 
f o r  any wave-number v a r i a t i o n s  a t  higher  order; however , t o   t he   o rde r  of the  analy- 
sis, these  higher  order terms can be neglected.   In   order   to   apply  equat ion ( 3 )  t o  
slowly  diverging  flows and maintain a uniform  phase  velocity  along  the symmetry l i n e  
y = 0, it i s  necessary   to  assume a dependence  of yc on the  s low  var iable   x '  , 

.v 

.., 

This  two-dimensional  problem i s  formulated  in terms of the stream funct ion and 
v o r t i c i t y ,  and i n  terms of the  previously  def ined  inner   var iables ,   the   governing 
d i f f e ren t i a l   equa t ions   can  be w r i t t e n  as 

2 



where 

and R is a Reynolds number formed  from a cha rac t e r i s t i c   l eng th  and ve loc i ty  scale 
of the  flow, $ = $ ( x ' , z , $ )  is the stream funct ion,  u = u ( x '  and 
v = v(x ' , : ,~ )  are the  streamwise and  normal v e l o c i t y  components, r e spec t ive ly ,  and 
51 = i l ( x ' , x , y )  is  t h e   v o r t i c i t y .  Coupled  with  the  governing  differential   equations,  
an  appropriate  asymptotic  expansion of JI i n  the inner  vortex  region is required.  A 
su i tab ly   genera l   expans ion   for  Jl is  given by 

where  the  usual  requirements  for a valid  asymptotic  sequence are assumed to   ho ld .  
Before  obtaining  the  governing  different ia l   equat ions a t  the  various  orders of 
approximation, it is necessary   to   quant i fy  the factor   appearing  in   the  equat ions.  

3 



I n   a n t i c i p a t i o n  of the  B l a s i u s  boundary l aye r  example t o  be shown i n   s e c t i o n  5 ,  
one  can es t imate   the   s ize  of dyc/dx’ f o r   t h i s  boundary  layer  f low.  If   the  trans- 
verse   coordinate  is  sca led  by the  boundary  layer  thickness a t  some downstream  loca- 
t i o n  xo, t h a t  i s  , 

6 0 = 5 E  (10) 

where urn is the  f ree-s t ream  veloci ty   outs ide  the  boundary  layer ,   then yc i s  anal- 
ogous to   the   usua l  B l a s i u s  s imi l a r i t y   va r i ab le   w i th  0 < yc < 1 .  Thus the   f ac to r  
dyc/dx’  can be wr i t ten ,   to   lowes t   o rder ,  as 

where Rx = - i n   t h i s  boundary layer   case.  With th i s   spec i f ica t ion   comple ted ,  
t he   gove rn ing   d i f f e ren t i a l   equa t ions   a t   t he   va r ious   o rde r s  can be der ived.  

UCOXO 
V 

The O ( P )  equat ion is obtained by subst i tut ing  the  expansion  equat ion ( 9 )  i n t o  
equat ions (5 1 through (8 1 : 

where 

Note t h a t   i n   t h e   p r e s e n t  

(13)  

formulat ion,   the   lowest   order   vort ic i ty  is not  simply  deter- 
mined by g rad ien t s  of the  streamwise  velocity  but is  determined by g rad ien t s  of both 
the  streamwise and t r ansve r se   ve loc i t i e s .   I n   o rde r   t o  be c o n s i s t e n t   w i t h   t h e   i n i t i a l  
physical  assumptions  concerning  the  dominant  inviscid  behavior of the  vortex  motion, 
it is appropr i a t e   t ha t   t he  limit ( ~ R 1 - l  + 0 be chosen i n  equation ( 1  2 ) .  The 
O ( p  ) equat ion  reduces  to  

aqi0 anio aTio aniO 
a; a; a; a; 

- 0  

4 



or 

where 

The set of equations,   equations ( 1 3 1 ,   ( 1 5 1 ,  and ( 1 6 ) ,  were o r ig ina l ly   s tud ied  by 
S t u a r t   ( r e f .  2 )  i n   t he   con tex t  of f i n i t e - ampl i tude   o sc i l l a t ions   i n   mix ing   l aye r s .  
The s o l u t i o n   t o   t h e  set, appropriate   to   the  physical   problem a t  hand, is 

where co is a cons tan t   cons t ra ined  by ( r e f .  1 1 

o < c  < I  ( 1 9 )  
0 

and K i s  a c o n s t a n t   a s s o c i a t e d   z i t h   t h e   c i r c u l a t i o n  of the  vortex  having  bounding 
contour , -$ < x < 2r - 4, -QD < y < -, and $ is an a rb i t ra ry   phase   angle .  The 
c i r c u l a t i o n  of the  vortex,  as given by equation ( 1 8 ) ,  is eas i ly   de te rmined   ( re f .  2 )  
as 

I 

The d i s t r i b u t i o n   g i v e n   i n   e q u a t i o n s  ( 1 7 )  and ( 1 8 )  i s  r a the r   gene ra l ,   i n   t he  
sense   tha t   the   cons tan t  co governs  the  gross   features  of the   vor tex   in  a range 
varying  between a p o i n t   v o r t e x   d i s t r i b u t i o n  (co + 1 )  and  an  unperturbed  hyperbolic 
t angen t   ve loc i ty   p ro f i l e  ( c  = 0 ) .  The s t a b i l i t y   c h a r a c t e r i s t i c s  of t h i s   vo r t ex  
d is t r ibu t ion   have   been   s tud led   in   re fe rence  3; however, t he   i n t en t   he re  is n o t   t o  
conduct  such a s t a b i l i t y   s t u d y   b u t   t o  examine the  composite  f low  structure a t  some 
po in t   i n   space  and time when such a vortex is evolving  through  the  flow.  This is  
a l s o   d i s t i n c t  from r e c e n t  work by Pierrehumbert and Widnal l   ( ref .  4 )  and the earlier 
work of Browand and Weidman (ref.  1 1 ,  where  such v o r t i c a l   d i s t r i b u t i o n s  were s tud ied  
in   connect ion  with  f ree   shear   layers .   There  the  object ive w a s  t o  examine t h e   i n t e r -  
ac t ion  dynamics  and c r i t i ca l  parameters of i n t e r a c t i n g   v o r t i c e s  which  spanned t h e  
width of the  shear   layer .  

? 
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This   lowest   order   solut ion  leaves  the two parameters p and K unspecified.  
Higher   order   inner   solut ions are needed t o   f i x  p, and the matching  process w i l l  h e l p  
s t r u c t u r e   t h e   o u t e r   s o l u t i o n   f i e l d .  The O ( u 2 )  d i f f e r e n t i a l   e q u a t i o n  is 

where 

The e s t i o n   t h a t  arises a t  t h i s   p o i n t  is the  choice of the   appropr ia te  limit f o r  

is d i f f e ren t   t han   t he   l owes t   o rde r   d i f f e ren t i a l   ope ra to r ,  it is c o n s i s t e n t   t o   s o l v e  
the  homogeneous problem a t  th i s   o rde r ;   t he re fo re ,  

(lJR . Since   t he   d i f f e ren t i a l   ope ra to r  on the  lef t -hand '   s ide of equation ( 2 1  ) 

is  the  chosen limit. The homogeneous  form  of equation (21 is readi ly   so lved  by 
introducing  the new independent   var iable  

- 
-$io/K 

Q = e- 

and  transforming to  the new coordinate  system (Q,;). The r e su l t i ng   equa t ion  is 

Y[ f ]  = 0 a 
ax 

where 

6 



#.. 

and, i n   g e n e r a l ,  nil and $il can   bo th   r e t a in  some periodic dependence on  x. I t  
is  necessary to cont lnue to the next  order to  f u r t h e r   i d e n t i f y  and qi1 and 
uniquely  determine 1-1. 'il 

The O ( p  ) equation  can be w r i t t e n  as 3 

where 

.., 
Once again  transforming to  (Q,x)  coordinates would place equa t ion   (27 )   i n  a more 
tractable form. I n   l i g h t  of the O ( p 2 )  equat ion (eq. (25)  1 ,  the  right-hand side of 
equation  (27 1 cannot   re ta in   any   secular  terms, t h a t  is, any periodic funct ions of 
x. In  the  absence  of  any  decision on the   l imi t ing   va lues  of t he  terms cont inuing l~ 
and the  Reynolds number, it is necessary t o  examine the funct ional   behavior  of 

or  



where   denotes   d i f fe ren t ia t ion   wi th   respec t   to  Q. I n   o r d e r   f o r   t h i s  term t o  be 
independent of x it is necessary   for  qi l ,  and t h e r e f o r e  Qil ! t o  be funct ions  only 
of Q. The s t r u c t u r e  of these two functions  can be f u r t h e r   d e l i n e a t e d  by r e f e r r i n g  
back to   equat ion  ( 26) . Equation ( 26)  can be expanded t o   g i v e  

where 

C l e a r l y   f ( Q , q i l )  must  equal  zero and the r e s u l t i n g   s o l u t i o n  is  Jlil = Constant. 
Without  any loss of g e n e r a l i t y   i n   t h e   i n n e r   s o l u t i o n   f i e l d ,  it is s u f f i c i e n t   t o   t a k e  

Now the limit processes   in   equat ion ( 2 7 )  can  be  performed.  Since  inhomogeneous terms 
should  appear a t  t h i s   o rde r ,  it is only  necessary  to  determine  whether  nonparallel   or 
purely  viscous  effects   predominate .   In   the  absence of any n o n p a r a l l e l   e f f e c t s  the 
viscous limit dominates,   that  is, 

l.I = R  
-1 /3 

P 

I f  the outer  f low is slowly  diverging,  the  appropriate limit is 

p = p  = R  
-1 /3 

nP  P 

(34 )  

(35)  

s i n c e  

Even though t h i s   a n a l y s i s  was not  motivated by quest ions of s t a b i l i t y ,  it i s  worth 
not ing  the  viscous  layer   s ize   obtained  here  (eq. (34)  ) and t o  compare these  neces- 
s a r i l y   non l inea r   r e su l t s   w i th   p rev ious   non l inea r   s t ab i l i t y   s tud ie s ,   such  as those 
motivated by the  ideas  of Benney and  Bergeron ( r e f .  5 ) .  In   those   s tud ies   nonl inear  
e f f e c t s  dominated i n   t h e  cr i t ical  l aye r  and v iscous   e f fec ts  were secondary.  This, of 
course, i s  cons is ten t   wi th   the   s t ruc tura l   ideas   p resented   in   th i s  work. F ina l ly ,  it 
should be po in ted   ou t   t ha t   t he   nonpa ra l l e l   e f f ec t s  are sus t a ined  by terms o r i g i n a t i n g  
in   the  nonl inear   advect ion terms. In  the  absence of such stress g r a d i e n t   e f f e c t s ,  
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3 .  INTERMEDIATE MATCHING REGION 

I n   s e c t i o n  2 ,  t h e   i n n e r   s o l u t i o n   f i e l d  w a s  e s t ab l i shed .   Th i s   so lu t ion  must be 
formally matched to  an appropr i a t e   ou te r   so lu t ion   i n   o rde r   t o  form a uniformly  val id  
composite  expansion. The process  involves  the  introduction of su i t ab le   i n t e rmed ia t e  
v a r i a b l e s   ( r e f .  6 )  given by 

where 

and 

Since the vortex is embedded in   the  f low there are two dist inct   matching  regions:  
the  region  above  the  vortex y + and the  region below the  vortex y + --. I f   t h e  
lowest   order   inner   solut ion is w r i t t e n   i n  terms of the   in te rmedia te   var iab les ,   the  
inne r   so lu t ion  (eq. (17)) becomes 

- 

If 1:l + -, the  two matching limits of equation (37) can be w r i t t e n  as 

+ (T + -) 

9 



These stream funct ion  values  will indeed  match t o   t h e  O( I ) o u t e r  stream funct ion 
d i s t r i b u t i o n ,  and t h e   c o n t r i b u t i o n s   t o   t h e   r e s p e c t i v e   o u t e r  flow  regions are 

+ ( C  + K)&y, ( 4 0  1 

I t  is important  to  note that i n  the present   formulat ion,   the   per iodic  streamwise 
dependence is lost   in  the  matching  process  because of the  t ranscendental ly  small 
e f fec t .   This  eases t h e   r e s t r i c t i o n s  on t h e   i n t e r p r e t a t i o n  of the  present   formulat ion,  
s ince   t he  streamwise range of the  vortex  dis turbance is l imi t ed   he re   t o  a s i n g l e  
wavelength. I n  addi t ion ,   th i s   a l lows   the   inner   so lu t ion   to  be matched l o c a l l y ,   p o i n t  
by p o i n t ,   t o  an outer   f low which is e i t h e r  paral le l  or   se l f - s imi la r ,   bu t   never the less  
s lowly  diverging.   In   the  next  two sec t ions ,   an  example  of  each  type of flow w i l l  be 
given. 

4. OUTER VISCOUS F!LOW FOR PARALLEL FLOW CASE 

- 
The independent  variables  appropriate  for  the  general   outer  problem are X I ,  x ,  

and y and are assumed t o  be sca l ed   t o  O( 1 1. For t he  moment, the   der iva t ions  w i l l  
be r a t h e r   g e n e r a l   i n   o r d e r   t o   l a y  a proper   f ramework  for   both  the  paral le l   f low case 
cons ide red   i n   t h i s   s ec t ion  and the  nonparal le l  case t o  be  considered  in  the  next 
s ec t ion .  The general  form of the  equations  for  the  two-dimensional  outer  flow  prob- 
l e m  can be w r i t t e n  as 

10 



Recal l ing   the  form  of the o u t e r  limit of the inne r   so lu t ion ,  it is seen _that the  type 
of   ou ter   f low  tha t  is considered  can be expl ic i t ly   independent  of both x and x ' .  
Then, i f   t he   ou te r   f l ow is parallel or  even  dependent on  some s i m i l a r i t y   v a r i a b l e ,  
the   lowes t   o rder   ou ter   so lu t ion  and inner   solut ion  can be matched. The example  prob- 
l e m  to be cons ide red   i n   t h i s   s ec t ion  is p lane   Po i seu i l l e  flow. The outer  dependent 
v a r i a b l e s  are independent of x and x' t o   l owes t   o rde r ,   t ha t  is 

_ 

where s is + f o r  y > yc  and s is - f o r  y < yc. Equation ( 4 5 )  reduces  to  
t h e   t r i v i a l  form 

2 
a Qos 

a Y2 

" - 0  

with   so lu t ions  

$,- - - -  E o y 2 + c y  bl 3 + b y + b  2 3 

( 4 7 )  

where the  var iables   have  been  scaled by the  channel  height h and the maximum undis- 
turbed  inf low  veloci ty  U,. The boundary  conditions  imposed a t  lowest  order are 

=r 2, - "(1 - yc 3 - yc 3 ,  (s + a t  y = 1 )  

-2Yc + 7 Yc ( s  - a t  y = 0) 

4 

$os 
(Undisturbed  values) ( 5 1  

2 4 3  
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I n   a n t i c i p a t i o n  of the  matching, the va lue   for  the vortex  phase  veloci ty   needs  to  be 
determined.  This  velocity is the   ve loc i ty  a t  y = yc i f   t he   f l ow  d id   no t   con ta in  
the   vor tex .   In  the channel  flow case 

c = 4yc(l - yc) (53 1 

I f   t h e  boundary  conditions are appl ied   to   equa t ions   (48)  and  (491,  the  constant  coef- 
f i c i e n t s  become 

6a 
a =  3 +  3 a ~  

1 3 I 

( 1  - y )  (1  - yc) 
C 

-6b3 3 b ~  
b = - - -  

1 
YC YC 

a2 = 0.0, b2 = 0.0 

a 3 = 2 - yc2) - +(I - yc3), b3 = -2yc 2 4 3  + 5 yc 

(54)  

( 5 5 )  

( 5 6 )  

where the  remaining  coeff ic ients ,  a. and  bo, are determined from the  matching. 
The outer   var iab les  (1 - y) and y can be w r i t t e n   i n  terms of the  matching  variable 
y, and are given by 

1 - Y = (1  - yc) - ,y, 

Y = Yc + EY, 

( 5 7 )  

(58)  

Subs t i t u t ing  these forms in to   equa t ions   (48 )  and (49 ) ,  one  can  obtain $o+ and q9- 
i n  terms of powers of &yF. From sec t ion  3 ,  it i s  seen  that   the   matching  occurs   wlth 
c o e f f i c i e n t s  of EY,. Thls   process   yields   the  coeff ic ient   Values  

2 ( C  - K) 
YC 

( 6 0 )  

The remaining  coeff ic ients  al and  bl are then  determined from these  values of 
a. and  bo.  Note t h a t   t h e   c o e f f i c i e n t s  are a l l  bounded in   the   p resent   formula t ion .  
Th i s   r e su l t s  from the f a c t   t h a t   t h e   i n n e r   r e g i o n  is assumed t o  be  of O(u) i n  s i z e ;  
theref   ore ,   the   vortex  should  be a t  least a d is tance  of O( p 1 away from the  bound- 
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aries t o  be consis tent   with  the  basic   assumption  about   the  inner   region.  A uniformly 
val id   composi te   solut ion,   to   lowest   order   in   the  dependent   var iables ,   can be  formed 
by summing the  lowest   order  i n n e r  and ou te r   so lu t ions  and sub t r ac t ing   ou t   t he  common 
p a r t   ( r e f .   6 ) .  The resu l t ing   composi te   so lu t ions   a re  

y2  + K + K tanh 
{l + 

co cos(;; + 9, -1 

cosh y - 1  
co s i n ( ;  + 4 )  

V = K  
cosh  cosh y 

where G ,  y ,  and 4 were def ined i n  s ec t ion  2 ,  p = R-1/3 has  been  used, and the  
cons t an t   coe f f i c i en t s  w e r e  d e f i n e d   e a r l i e r  i n  t h i s   s e c t i o n .  I t  should be pointed  out  
t h a t   t h e   v o r t i c i t y  is d i s c o n t i n u o u s   a t  y = yc a t  f i r s t   o r d e r ,  0 ( 1  1; however, t o  
zero th   o rder ,  0 ( R ’ I 3 ) ,  t h e   v o r t i c i t y  is  continuous  across  the  channel.   If   higher 
order  terms are   inc luded   in   the   expans ion   procedure ,   th i s   s ingular i ty  would be 
removed. A s  can be seen from equat ions  (62)  and (631,  the  velocity  boundary  condi- 
t i o n s   a t   t h e   w a l l  w i l l ,  i n   g e n e r a l ,   n o t  be s a t i s f i e d   t o   t h e   o r d e r  of the  approxima- *b 

.& 
I t i o n   f o r  a l l  values  of yc and K. The task  then is to   del imit   the   range  over  which 

0 yc  and K may vary. A t  y = 0 and y = 1 the   ve loc i ty   f i e lds   r educe   t o  
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co s i n ( x  + $ 1  co cos(;; + $1 -1 

cosh R1 /3 yc cosh R1 l3yc 
v(y=O) = K 1 + (66) 

where the  accuracy  of  the  approximation O(R-2/3) i n   t h e   v e l o c i t y   f i e l d  is based on 
the   o rder  of approximat ion   ob ta ined   in   the   inner   so lu t ion   f ie ld .   S ince   the   per iodic  
func t ions  are bounded, t h e   r e s t r i c t i o n s  on yc  must come from the  hyperbolic  func- 
t i o n s .  Note t h a t   t h e  above  does  not   put   any  res t r ic t ions on the  value  of K; how- 
e v e r ,   r e s t r i c t i n g  K to  values less than l would improve the  accuracy  with which the 
boundary  conditions are s a t i s f i e d .  A cursory  examination  of  equations (65) 
through (68) r evea l s  that the  hyperbolic  functions are bounded as 

tanh R 1'3 yc = 1 .O - O(R 1 (69 1 -2/3 

cosh R 1 /3 yc = O ( c o R  2/3 ) (70) 

tanh  R1l3(l  - y = 1 .O - O ( R  ) 
-2/3 

C 
(71 

cosh R1/3 ( 1  - yc) = O(coR 2/3 ) (72) 

4 

where the  constant  c0 is i n c l u d e d   i n   t h e   r e s t r i c t i o n s  on the  hyperbol ic   cosine 
f a c t o r   f o r   g e n e r a l i t y .   I f   a n  0 ( 1  1 cons tan t   o f   p ropor t iona l i ty  is assumed i n   t h e s e  
order  estimates and f ini te-ampli tude  dis turbances are considered,  then  the  following 
limits on  yc can be ex t r ac t ed  from equations (69) through (72) 

c 

R ln(2coR 2/3 1 $ yc $ 1 - R In  ( 2CoR -1 /3 -1 /3 2/3 ) 
(73 1 
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li 

where 

2 C  R2'3 > 1 
0 

(74) 

With th i s   de t e rmina t ion  of the limits on  yc as much information  as   possible   has  
been  extracted from the   so lu t ion   t o   t h i s   o rde r .  The only  parameter  in  the  problem 
that   has   not   been  del ineated  in  any concise way is the   c i r cu la t ion   cons t an t  K. 
Cons t r a in t s  on K may arise a t  higher  orders,   ei ther  through  the  matching  process or 
the   app l i ca t ion  of the  boundary  conditions.   Nevertheless,   for  the  present  study, K 
is a free  parameter  of o(1 1 ,  whose value w i l l  be chosen t o   b e s t   s u i t   t h e   p r a c t i c a l  
problem a t  hand. 

As a test  case,  computations  were  carried  out a t  a Reynolds number, based on 
channel  height and maximum undis turbed  inf low  veloci ty ,  of 1 0 4 . The amplitude of t he  
S t u a r t   v o r t e x  co w a s  set a t  0.25 ( r e f s .  1 ,  3 ,  and 4 )  and K was chosen t o  be  0.20. 
The value of l~ corresponding  to  this  Reynolds number is 0.046. The r e s u l t s  of t he  
s t r eamwise   ve loc i ty   d i s t r ibu t ion  a t  var ious  values  of ( x  + $ 1  a r e  shown i n   f i g u r e  1 .  
The r e s u l t s   r e f l e c t ,   a s  ( x  + $1  v a r i e s  from 0 t o   IT, t h e   e f f e c t  of a passing  vortex 
on an   o therwise   fu l ly   deve loped   para l le l   f low  a t  a f ixed   po in t   in   space .  I t  is 
impor tan t   to   no te   tha t   the   vor tex ,  which is  of l i m i t e d   s p a t i a l   e x t e n t   i n   t h e   p r e s e n t  
example,   affects a r a the r   l a rge   po r t ion  of the  channel   f low.   This   resul t   indicates  
t ha t   quan t i t i e s   such   a s   su r f ace   p re s su re  and wal l   shear   s t ress   are   modif ied by the  
passage of such a v o r t i c a l   d i s t r i b u t i o n .  

5. OUTER VISCOUS FLOW FOR NONPARALLEL FLOW CASE 

As i nd ica t ed  earlier, to   t he   o rde r  of the  approximation,   nonparal le l   se l f -  
similar outer  flows  can be examined within  the  present   context .   Consider  now, a s   t he  
nonparallel  flow  example, a Blasius  boundary  layer  f low.  Since  the  inner  Stuart  
vo r t ex   so lu t ion  w a s  found t o  be independent of x ' ,  the procedure  used to obta in  a 
composite  solution  for  the  channel  f low  can be appl ied  to  the  boundary  layer  flow 
over a continuous  range of X I ,  with  the  only  change a t  each  x '   location  being  the 
loca t ion  of y,. I t  should be r e c a l l e d  a t  t h i s   p o i n t   t h a t   t h e   n o n p a r a l l e l   e f f e c t s  
which  appear i n   t he   i nne r   r eg ion  e ua t ions  as dyc/dx' w e r e  approximated t o  lowest 
order  by the   cons t an t  term -5~&'/~/2;   thus,   any  x '   var ia t ion of  dyc/dx' w a s  
removed. The lowest order   equa t lon   in  the outer   reg ion  is obtained from equation  (45 1 
by using  the  fol lowing  approximation  to  JI: 

15 



" 
where , as before  , no outer  flow  dependence on  x i s  assumed. The lowest  order  vor- 
t i c i t y   t r a n s p o r t   e q u a t i o n  is 

NOW, if   the  usual  boundary  layer  approximations are made, equation  (76)  can  be 
w r i t t e n   i n   t h e   f a m i l i a r  form 

where R i s  a Reynolds number 
boundary  layer  thickness a t  x 

formed  from the  f ree-s t ream  veloci ty  UaD and the  
= x' + xo, t h a t  is 

I n  a completely  analogous manner with  the  usual  Blasius  method,  the  result ing stream 
funct ion  equat ion is  

where the   d i f f e ren t i a t ion   can  be i n t e r p r e t e d   t o  be wi th   r e spec t   t o  y i n   l i g h t  of 
the  nondimensionalization by 6(x).   Equation  (79)  can  be  solved  given  the  appro- 
pr ia te  boundary  conditions. A s  w a s  the case in   plane  Poiseui l le   f low,   the  outer   f low 
boundary  layer is  d iv ided   in to  two regions , y < yc  and y > yc. First the  region 
y < yc i s  considered. 

S ince   t he   so lu t ion   t o   t he   o rd ina ry   d i f f e ren t i a l   equa t ion   ( eq .   (79 ) )  w i l l  be 
determined by numerical   in tegrat ion,  it i s  necessary,  for  matching  purposes, 
expand the outer  stream func t ion   so lu t ion   i n  a Taylor series expansion  about 

t o  

YC 

( 8 0 )  

i n t o   t h e  Note tha t   t he   ques t ion  of con t inu i ty  of a $  /ay  across  does  not   enter  : 
present   contex t ,   s ince  the formulation of  aOcomposite so lu t lon   va l id   ove r   t he  whole 
domain is a superposi t ion of two d i s t i n c t   o u t e r   f i e l d s .  Each o u t e r   s o l u t i o n   f i e l d  is 
viewed as a d i s t i n c t  problem  with  appropriate  boundary  conditions  applied a t  y = 0 

% 
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and Y = yC f o r  y < yc and a t  y = yc and y .+ f o r  y > yc. Thus, a t  a f ixed 
x '   t he  part of t he   ou te r   so lu t ion  which  matches t o   t h e   i n n e r   s o l u t i o n  is 

(81  

Emboldened by the  success  in  the  channel  f low,  the same procedure  used  to  determine 
the   per turbed   ou ter   so lu t ion  is fol lowed  in   the  present  case. The boundary  condi- 
t ions   assoc ia ted   wi th   undis turbed  stream funct ion  value and ze ro   ve loc i ty  a t  y = 0 
are 

$o-(y 'o)  = 0 

$' (y=O) = 0 
0- 

(Undisturbed  value) 

Equations (81 ) through  (83) are s u f f i c i e n t  to determine  the stream funct ion,  as w e l l  
as its a s s o c i a t e d   d e r i v a t i v e s ,  from y = 0 t o  y = yc. I n   t h i s  example, it should 
be  noted that the stream funct ion  value a t  y = yc w i l l  not  be 0,  although it w i l l  
be cont inuous  s ince Jlo, ( y = yc) w i l l  be equated to  $* ( y = yc) . Now the  region 
y > yc w i l l  be  considered. 

From the  outer  limit of the  inner   solut ion  (eq.  ( 7 9 ) )  and the series expansion 
(eq. (80 )  1, the   inner  limit of the   ou ter   so lu t ion  which  matches  with  the  inner  solu- 
t i o n  is 

6' (y=y = c + K 
O+ C 

Since  the stream funct ion is assumed continuous  across y = yc, 

Jlo+(Y=Yc) = Jl,-(Y=Yc) 

the  only  remaining  boundary  condition  to be appl ied is a t  t he   f r ee  stream. 
condi t ion is given by 

(85 )  

This 

This,  of course,  is the  usual  free-stream  condition, and the   exac t   l oca t ion  where 
equation  (86)  holds is l e f t   i n t e n t i o n a l l y   a r b i t r a r y   t o   a c c o u n t   f o r  any  boundary l a y e r  
thickening  due  to  the  presence of the  Vortex.   This  extra  degree of freedom w a s  not 
present  in  the  channel  f low  problem  due  to  the  r igid  bounding  surfaces.  Equa- 
t i o n  (791, coupled  with  the  boundary  conditions  appropriate  to  the  region of i n t e r e s t  
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w e r e  solved wi th  a fou r th -o rde r   va r i ab le   i n t e rva l  Runge-Kutta  method. The composite 
so lu t ion   €or  the dependent   var iables   can be formal ly   wr i t ten  as 

f - 
co s i n ( x  + $ 1  

K ( Y  Y c )  
cosh y cosh y 

- 
co s i n ( x  + $1 

- t +  K ( Y  G Yc) 

L 
cosh y cosh y 

- - 
where x, y,  and 4 were de f ined   i n   s ec t ion  2 ,  l~ = R -113 i n   t h i s  case, and terms 

of O(R-2’3) were neglected.  Note t h a t  Once aga in   t he   vo r t i c i ty  is discontinuous 
a t  O( 1 ) .  The r e s t r i c t i o n s  on the   loca t ion  of the vortex  can  once  again be der ived 
from the  hyperbol ic   funct ions.   In   l ight  of t h e   a r b i t r a r y   l o c a t i o n  of the  top free- 
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stream boundary, yc is only   l imi ted   here  to its proximity to the boundary a t  
y = 0. The r e s t r i c t i o n s  are 

Once again the parameter K is f r e e   t o  be chosen  for the pa r t i cu la r   phys i ca l  problem 
a t  hand. 

As a test case, a computation w a s  c a r r i e d   o u t  a t  a Reynolds number, based on 
local boundary  layer  thickness and undis turbed  f ree-s t ream  veloci ty ,  of l o3 .  The 
amplitude of the   d i s turbance  co w a s  se t   a t  0.25 and the   cons tan t  K w a s  set  equal 
to  0.2 , For the  chosen  Reynolds number, t he  small parameter p w a s  f ixed  a t  0.1 , 
Figure 2 shows t h e   d i s t o r t i o n  of the streamwise v e l o c i t y   p r o f i l e  as the   vor tex  passes 
by a f i x e d   p o i n t  streamwise l o c a t i o n  x0.  Once a g a i n   t h e   e f f e c t  of the  vortex is 
f e l t  throughout most of the  boundary  layer,  even  though its s p a t i a l   e x t e n t  is bounded 
by LI. It is also w o r t h  n o t i n g   t h a t   t h i s   t y p e  of dis turbance  can be present   near   the  
top  of the  boundary  layer.  The ex is tence  of such  f ini te-ampli tude  dis turbances near  
the   top  of t he   l aye r  is a r e q u i s i t e   f o r   t h e   r e c e p t i v i t y  of the  boundary  layer t o  any 
free-s t ream  dis turbances.  

6. DISCUSSION 

As w a s  stated i n   s e c t i o n  1 ,  t h e   i n t e n t  was t o   c o n s t r u c t  a uniformly  valid  flow 
f i e l d ,   t o  some order  of approximation,  that  would m i m i c  t h e   s t r u c t u r e  of a rea l   f low 
in   the   p resence  of  a f i n i t e - ampl i tude   vo r t i ca l   d i s tu rbance .  The b a s i c   s t r u c t u r e   f o r  
t h e   v o r t i c a l   f i e l d  w a s  taken  to  be a S tua r t   vo r t ex .  Such  a f i e l d  is der ivable  from 
the   gene ra l   vo r t i c i ty   t r anspor t   equa t ion  when both   the   t ransverse  and streamwise 
coord ina tes   a re   sca led  by the  same small parameter. As w a s  seen   in   the  two test  
cases, however,  the  influence of the  vortex  spreads  throughout most  of the  flow  even 
though its dynamic features  dominate a smal l   spa t ia l   reg ion  of O ( p ) .  I n   a d d i t i o n ,  
t h e   a n a l y s i s   t h a t  was presented   necessar i ly  restricts t h e   r e s u l t s   t o   l a r g e  wave- 
number d is turbances .  

I t  is b e n e f i c i a l  a t  t h i s   p o i n t   t o   p l a c e   t h e   p r e s e n t  work in   context   with  pre-  
vious work on vo r t i ce s   i n   t he   p re sence  of solid boundaries.  For  example,  Walker 
( r e f .  7 )  studied  the  boundary  layer  produced by the presence of a s i n g l e   r e c t i l i n e a r  
vor tex   f i l ament  above  an i n f i n i t e   p l a n e  w a l l .  I t  was concluded  that  no steady  f low 
f i e l d   e x i s t s  and t h a t  a r e c i r c u l a t i n g  eddy,  which is formed i n   t h e  boundary  layer 
flow,  causes  rather  explosive  growth of the   boundary   l ayer   i t se l f .  The problem  pre- 
s en ted   i n  the present  paper is fundamental ly   different ,  It  is assumed here  that the  
v iscous   f low  a l ready   ex is t s  and t h a t  a vortex,  which is necessa r i ly  of small spat ia l  
ex ten t ,  is embedded wi th in   th i s   f low.   In  the absence  of  the  base  undisturbed  viscous 
f low,   the  present   formulat ion is i l l -posed   s ince  it would be imposs ib le   for   the  
boundary  condition a t  the  boundaries  to be s a t i s f i e d ,   i n   g e n e r a l .  For these reasons,  
it is f e l t   t h a t   t h e   p r e s e n t  problem closely  resembles  a real f low  s i tua t ion  of a 
vor t ica l   s t ruc ture   evolv ing   th rough an otherwise  undisturbed  flow. It does  remain  an 
open ques t ion   as   to   the   behavior  of the   vor tex   as  it evolves   in  t i m e  and space, b u t  
t he   p re sen t  work shows t h a t  a s t a t i o n a r y   s i t u a t i o n   c a n   e x i s t  and can be desc r ibed   i n  
a consistent  mathematical  framework,  This framework yielded some in t e re s t ing   f ea -  
t u r e s  which are worth  noting. 
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I n   t h e   a n a l y s i s ,   n o n p a r a l l e l   e f f e c t s  were accounted  for by r e q u i r i n g   t h a t  the 
e n t i r e   v o r t e x  move uniformly  through  the  flow.  Thus,  for  the  laminar  boundary  layer 
flow,  the  vortex is inc l ined   w i th   r e spec t  to  t h e  w a l l ,  and as w a s  mentioned i n  
s e c t i o n  5, t h i s   r eg ion  is sustained by nonl inear  stress e f f e c t s .  The f i n a l  comment 
concerns the e f f e c t  of the  vortex on the  boundary  surfaces. Recall that the  w a l l  
shear  stress, t h a t  is au/ay, w a s  allowed to  vary   in   the   ca lcu la t ion ;   on ly   the  stream 
func t ion  and v e l o c i t y  a t  the walls were taken as e i ther   undis turbed   f low  va lues   o r  
zero.   This   a l lowed  for   the  effect  of the   pass ing   vor tex   to  be f e l t   i n   b o t h   t h e  w a l l  
shear  stress and pressure   s igna tures .  

The work p r e s e n t e d   i n   t h i s  paper is intended as a f i r s t  step i n  a more complete p. 

and  accurate  mathematical   description of v o r t i c a l   s t r u c t u r e s ,  three-dimensional as 
well as two-dimensional, embedded i n  a broad class of viscous outer  f lows. i 

Langley  Research  Center 
National  Aeronautics and  Space Administration 
Hampton, VA 23665 
October 31 , 1983 
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Figure 1 .- Effect of vortical  structure on undisturbed velocity  profiles R = 10 ; 
co = 0.25; K = 0.2. 
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Figure 1.- Continued. 
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